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We demonstrate that a finite bath fluctuation theorem of the Crooks type holds for systems that have been
thermalized via weakly coupling them to a bath with energy independent finite specific heat. We show that this
theorem reduces to the known canonical and microcanonical fluctuation theorems in the two respective limiting
cases of infinite and vanishing specific heat of the bath. The result is elucidated by applying it to a two-
dimensional hard disk colliding elastically with few other hard disks in a rectangular box with perfectly
reflecting walls.
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I. INTRODUCTION

During the last decade a number of fluctuation theorems
have been reported in the literatures, which have contributed
a good deal to a better understanding of nonequilibrium ther-
modynamics �1–8�. These can be roughly divided in two
categories: steady state fluctuation theorems and transient
fluctuation theorems. The former apply to systems in non-
equilibrium steady states and give information on the system
fluctuations in the asymptotic regime of very large times �see
�9–11� for reviews on this topic�. The latter apply to systems
that are temporarily driven out of equilibrium and give infor-
mation about the fluctuations of work generated by the driv-
ing forces. The most representative example of the latter kind
is the Crooks fluctuation theorem �5,6�, that applies to sys-
tems that are initially in a canonical state. Although the ca-
nonical case is by far the most common case, one may need
to study situations where the system is initially distributed
according to some other statistics, instead. For example the
system might be initially a microcanonical state of well de-
fined energy. In this latter case it has been shown that a
microcanonical fluctuation theorem of the type of Crooks
also exists �12,13�. One naturally then wonders whether the
same type of transient fluctuation theorem exists as well for
yet other types of statistics.

In this work we focus on the probability distribution func-
tion �pdf� that describes the statistics of a subsystem of a
total classical ergodic system with fixed energy. For the case
where the interaction between the subsystem and the rest of
the total system �which we will refer to as the bath� is weak,
and the specific heat of the bath is independent of the energy
�as for an ideal gas, or for a bath composed of hard spheres�,
the derivation of the pdf is a standard problem of statistical
mechanics �14,15�. We make no assumptions regarding the
size of the bath; in particular we do not assume that it is
much larger or smaller than that of the system of interest as
assumed in the canonical and microcanonical cases respec-
tively. For this reason we refer to this type of bath as to a
finite heat bath, and to the statistics of the subsystem as to
the finite bath statistics �see Eq. �6� below�. For this statistics
we show that a fluctuation theorem of the type of Crooks,

i.e., a finite bath fluctuation theorem holds. This finite bath
fluctuation theorem includes the Crooks canonical fluctua-
tion theorem and the microcanonical fluctuation theorem, as
the two limiting cases in which the bath specific heat goes to
infinity and zero, respectively.

The present work is organized as follows. In Sec. II we
review the derivation of finite bath statistics and recall some
of its properties. In Sec. III we derive the corresponding
finite bath fluctuation theorem, and show that it reduces to
microcanonical and canonical fluctuation theorems in the
limits of vanishing and infinite baths, respectively. In Sec. IV
we apply the theory to a specific example �i.e., a two-
dimensional �2D� hard disk elastically colliding with few
other hard disks in a box� and test the validity of the finite
bath fluctuation theorem, both analytically and numerically.
Sec. V contains a discussion of the obtained results. The
conclusions are drawn in Sec. VI.

II. FINITE BATH STATISTICS

Let us consider a finite classical Hamiltonian system of
total Ntot particles and total energy Etot composed of two
weakly interacting subsystems: the “system of interest” �or
simply the system� and the “bath.” Assuming that the total
system is ergodic, the pdf of the system is given in terms of
density of states, �B�E�, of the bath and density of states of
the total system, �tot�E�, as �16�:

��z,�� =
�B„Etot − H�z,��…

�tot�Etot�
�1�

where z= �p1 , . . . , ps ,q1 , . . . ,qs� stands for the 2s dimensional
phase space point of the system. Here we assume that the
�sub�system Hamiltonian H�z ,�� may depend on some ex-
ternally controllable parameter � �this could be for instance
the volume of a vessel that contains the system, or an applied
magnetic or electric field�. For example, in the case of a bath
composed of n hard spheres in three dimensions, it is
�B�EB��EB

3n/2−1 �see Appendix A�, and one finds from Eq.
�1� �14�:

��z,�� =
�Etot − H�z,���+

3n/2−1

� dz�Etot − H�z,���+
3n/2−1

�2�

which is a known result of classical statistical mechanics
�17�. The symbol �x�+ is defined as �x�+ªx��x�, with ��x�*michele.campisi@physik.uni-augsburg.de
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denoting Heaviside step function. Note that, in this case, the
specific heat of the bath C�EB�, is energy independent and
equal to 3n /2 �18�. More generally one has the following
theorem �19,20�:

Theorem 1 The system pdf is given by

��z,�� =
�Etot − H�z,���+

C−1

� dz�Etot − H�z,���+
C−1

�3�

if and only if the specific heat of the bath C is energy inde-
pendent.

Here C is the microcanonical specific heat of the bath, i.e.,

C�EB� ª � �

�EB
TB�EB��−1

�4�

where EB is the energy, and TB�EB�ª�B�EB� /�B�EB� is the
microcanonical temperature expressed in terms of the phase
space volume �B�EB� of the bath, with energy below EB, and
the bath density of states �B�EB�=��B�EB� /�EB. In the fol-
lowing of this work we restrict ourselves to the case of en-
ergy independent, positive specific heat of the bath, abbrevi-
ated as C�EB�ªC�0.

Note that the pdfs in Eq. �3� are parametrized via the total
system energy Etot. It is however convenient to parametrize
the pdfs via a property that pertains to the subsystem only,
e.g., its average energy U. This is accomplished by writing
Etot=U+CT �here CT represents the average energy of the
bath�, substituting this expression in Eq. �3�, and imposing
that U=�dzH�z ;����z ,��. This leads to solving the follow-
ing equation for T, given the average energy U and �

� dzH�z;��†1 − �H�z;�� − U�/�CT�‡+
C−1

� dz†1 − �H�z;�� − U�/�CT�‡+
C−1

= U �5�

We shall denote the value of T that satisfies Eq. �5� for given
U and � as T�U ,�� �in Appendix B we prove that a solution
T�U ,�� always exists�. With this function at hand we can
parametrize the pdfs in Eq. �3� via the subsystem average
energy U and recast them in the form:

�C�z;U,�� =
†1 − �H�z;�� − U�/�CT�U,���‡+

C−1

NC�U,��
�6�

where NC�U ,�� is the normalization:

NC�U,�� =� dz†1 − �H�z;�� − U�/�CT�U,���‡+
C−1. �7�

As discussed in Appendix B it is not always possible to
invert T�U ,��. For sake of simplicity, in this work we shall
assume that T�U ,�� is invertible with respect to the argu-
ment U. This means that we could also choose T as an inde-
pendent parameter and express U as a function of T and �.
Thus we are free to choose between two possible parameter-
izations: a microcanonical-like parameterization �or U pa-
rameterization�, and a canonical-like parameterization �or T
parameterization� �21�.

We shall refer to the numerator in Eq. �6� as to a “gener-
alized Boltzmann factor.” It is important to stress that a fac-
tor of the type �1− �H�z ;��−U� / �CT��+

C−1 is a generalized
Boltzmann factor only if T=T�U ,��, in agreement with Eq.
�5�.

A. Remark

By expressing the specific heat C as C=1 / �1−q��0 one
recognizes that the pdf in Eq. �6� is the Tsallis escort pdf of
index q with q	1 �22�. Note that these do not exhibit heavy
tails but rather have a faster than exponential decay with a
finite cutoff occurring at the energy U+CT=Etot. The physi-
cal meaning of this cutoff energy is that the system’s energy
cannot be larger than the total energy.

B. Properties

1. Equipartition

The following equipartition theorem holds for the finite
bath statistics in Eq. �6� �22�:

	pi
�H

�pi

 = T�U,�� �8�

where � · � denotes average over �C in Eq. �6�, pi is one of the
momenta and repeated indices are not summed. Equation �8�
says that T�U ,�� can be interpreted as the temperature of the
system.

2. Heat theorem

The finite bath statistics provides a mechanical model of
thermodynamics �23�, meaning that the temperature T, the
external parameter �, its conjugated generalized force f�, and
the average energy U are related in such a way as to satisfy
the heat theorem �24�:

dU + f�d�

T
= exact differential �9�

where f� is defined in the usual way as:

f� = − 	 �H

��

 . �10�

This property is an important one because it allows to deter-
mine the thermodynamic entropy associated with the finite
bath statistics by finding the integral of the exact differential.
This is given by �24�:

SC�U,�� = ln NC�U,�� . �11�

3. Interpolation

The pdfs in Eq. �6� interpolate between canonical and
microcanonical ensembles. Using the limits of infinite and
null specific heat C, i.e.,

lim
C→


1 +
x

C
�

+

C−1

= lim
C→


1 +
x

C
�

+

C

= ex; �12�
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lim
C→


1 +
x

C
�

+

C

= ��x�; �13�

lim
C→


1 +
x

C
�

+

C−1

= ��x� �14�

one recovers the canonical and microcanonical pdfs �25�:

lim
C→


�C�z;T,�� =
e−H�z;��/T

Z�T,��
�15�

lim
C→0

�C�z;U,�� =
�„U − H�z;��…

��U,��
, �16�

respectively �20�. The microcanonical normalization ��U ,��
is the system density of states. Likewise one has, for the
normalization, the following limits �20�:

lim
C→


NC�T,�� =� dze−�H�z;��−U�/T = eU/TZ�T,�� �17�

lim
C→0

NC�U,�� = �
H�z;���U

dz = ��U,�� . �18�

The quantity ��U ,�� is the volume of system phase space
with energy below U. The density of states is related to � via
a partial derivative �=�� /�U. By taking the logarithm one
recovers canonical and microcanonical entropies; i.e.,

lim
C→


SC�T,�� =
U

T
+ ln Z�T,�� �19�

lim
C→0

SC�U,�� = ln ��U,�� . �20�

III. FLUCTUATION THEOREM

Consider an ensemble of systems distributed according to
Eq. �6�. Assume the system being decoupled from its bath
and that it is acted upon by an external force that changes the
external parameter � according to some prescribed protocol
��t� executed between times t0 and tf. The probability den-
sity that the external force does a certain work W on the
system in that interval of time reads:

ptf,t0
C,U�W� ª NC,0

−1 �U�� dz0��Hf�z f� − H0�z0� − W�

 1 −
H0�z0� − U

CT0�U� �
+

C−1

�21�

where z f =z�tf , t0 ,z0� is the solution of Hamilton’s equation
with initial condition z0. For simplicity of notation we drop
the variable � in all quantities that depend on it, and replace
it with a subscript 0 or f , depending on whether the quantity
is taken at values of � equal to ��t0� or ��tf�, e.g., H0�z�
ªH�z ,��t0��, T0�U�ªT�U ,��t0��. By making the change of
variables from z0→z f with a unitary Jacobian, one obtains

NC,0�U�ptf,t0
C,U�W� =� dz f��H0�z0� − Hf�z f� + W�

 1 −
Hf�z f� − �U + W�

CT0�U� �
+

C−1

�22�

where now z0=z�t0 , tf ,z f�, is the solution of Hamilton’s
equation with z f as initial condition and time running back-
ward. Note that the second term in the integrand is not a
generalized Boltzmann factor because in general it does not
satisfy Eq. �5�. However for any �T one can rewrite the
previous equation as:

NC,0�U�ptf,t0
C,U�W� = �T0�U� + �T

T0�U� �C−1

� dz f��H0�z0� − Hf�z f� + W�

 1 −
Hf�z f� − �U + W − C�T�

C�T0�U� + �T� �
+

C−1

.

�23�

We now choose �T as the solution of the following integral
equation:

� dzHf�z�B�z,U,W,�T�

� dzB�z,U,W,�T�
= U + W − C�T �24�

where, for convenience, we use the notation

B�z,U,W,�T� ª 1 −
Hf�z� − �U + W − C�T�

C�T0�U� + �T� �
+

C−1

;

�25�

or, equivalently, as a solution of

T0�U� + �T = Tf�U + W − C�T� . �26�

Then, we find

NC,0�U�ptf,t0
C,U�W� = Tf�U + W − C�T�

T0�U� �C−1

� dz f��H0�z0� − Hf�z f� + W�

 1 −
Hf�z f� − �U + W − C�T�

Tf�U + W − C�T� �
+

C−1

�27�

where the second term of the integrand is the Boltzmann
factor of the pdf �C(z ;U+W−C�T ,��tf�). The integral is the
product of NC,f�U+W−C�T� and the probability
pt0,tf

C,U+W−C�T�−W� that the force performs the work −W when
the protocol is run backward and the system is initially in the
state �C(z ;U+W−C�T ,��tf�).

Therefore the following fluctuation theorem is obtained:
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ptf,t0
C,U�W�

pt0,tf

C,Uf�− W�
= � Tf

T0
�C−1NC,f�Uf�

NC,0�U�
, �28�

where

Uf ª U + W − C�T �29�

Tf ª Tf�Uf� . �30�

Using Eqs. �11� and �28� can be rewritten in terms of entropy
as:

ptf,t0
C,U�W�

pt0,tf

C,Uf�− W�
= � Tf

T0
�C−1

exp��SC
f ,0�U,W�� �31�

where �SC
f ,0�U ,W�=SC,f�Uf�−SC,0�U�.

The finite bath fluctuation theorem of Eq. �31� allows to
calculate the ratios of probability of work done on the system
when it is driven arbitrarily away from equilibrium during
the action of the forward and backward protocol, in terms of
equilibrium properties such as entropy and temperature.

Recovering known special cases

1. Limit of microcanonical ensemble

In the limit C→0 Eq. �22� becomes �using the formula
��ax�=a−1��x�, and Eqs. �14� and �18��

�0�U�ptf,t0
C,U�W� = T0�U�� dz f�„H0�z0� − Hf�z f� + W…

�„Hf�z f� − �U + W�… . �32�

Using the microcanonical equipartition theorem �16�
T�U ,��=��U ,�� /��U ,��, one recovers the microcanonical
fluctuation theorem �12,13�:

ptf,t0
0,U �W�

pt0,tf

0,U+W�− W�
=

� f�U + W�
�0�U�

. �33�

Alternatively one can take the limit C→0 of Eq. �28� di-
rectly and obtain the expression T0�U�� f�U+W� / �Tf�U
+W��0�U��, which reduces to the previous one by virtue of
the microcanonical equipartition theorem.

2. Limit of canonical ensemble

Likewise, using the T parameterization, it can be seen
that, in the limit C→
 Eq. �22� becomes

Z0�T�ptf,t0
C,T �W� = eW/T� dz f��H0�z0� − Hf�z f� + W�e−Hf�zf�/T

�34�

One thus obtains the fluctuation theorem for the canonical
ensemble of Crooks �5,6�

ptf,t0

,T �W�

pt0,tf


,T �− W�
=

Zf�T�
Z0�T�

eW/T. �35�

IV. EXAMPLE: A 2D GAS OF HARD DISKS

In this section we illustrate the finite bath fluctuation theo-
rem by applying it to a system composed of n+1 elastically
colliding hard disks in a two-dimensional box with perfectly
reflecting walls. One disk will be our system of interest,
whereas the remaining n ones will form the bath. We assume
that the disks do not have rotational degrees of freedom. As
shown in the Appendix A, the specific heat is given in this
case by C=dn /2 where d is the number of translational de-
grees of freedom of each disk. In this case d=2, hence C
=n. Note the fact that C does not depend on energy.

A. Probability density function

The energy of the system of interest is simply its kinetic
energy; i.e.,

H�px,py ;M� =
px

2 + py
2

2M
, �36�

which fluctuates permanently due to the collisions with the
bath’s particles. According to Eq. �6�, the probability that the
disk has a given momentum �px , py� is given by

�C�px,py ;U,M� = NC
−1�U,M�1 −

�px
2 + py

2�/�2M� − U

CT�U,M� �
+

C−1

.

�37�

We consider the mass of the disk M as an external parameter
that can be changed at will in the course of time according to
prespecified protocols. The function T�U ,M� has to be com-
puted via Eq. �5�. In general, the solution of Eq. �5� with a
purely kinetic Hamiltonian with s translational degrees of
freedom gives the usual equipartition of energy �22�:
T�U ,M�=2U /s. In the specific case of Eq. �36� s=2, hence

T�U,M� = U , �38�

and

�C�px,py ;U,M� = NC
−1�U,M�1 − � px

2 + py
2

2M
− U�/�CU��

+

C−1

.

�39�

Using Eq. �7�, with Eq. �39� gives

NC�U,M� = 2�A�1 + C−1�CMU �40�

where A is the reduced volume �i.e., area in this two-
dimensional case� of the box �see the Appendix A for the
definition of reduced volume�. From Eq. �39�, one obtains
the pdf of energy E of the disk:

p�E;U� = U−1�1 + C−1�−C1 −
�E − U�

CU
�

+

C−1

. �41�

Interestingly, the energy pdf does not depend on the mass M.
In Fig. 1 we compare Eq. �41�, with the result of various
numerical simulations with C=1,2 ,3 ,4. Note that for C=1
the distribution is flat, for C=2 it is linear, for C=3 it is
quadratic etc. In view of theorem 1, the impressive agree-
ment between theory and numerics corroborates the validity
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of the assumed ergodic hypothesis for this model system.
Similar simulations have been reported in �26� for a one-
dimensional harmonic oscillator coupled to a bath of n one-
dimensional quartic oscillators. In that case the density of
states of the bath is proportional to E�3n−2�/4, and accordingly
the specific heat, C= �3n+2� /4, is energy independent.

B. Analytical test of the finite bath fluctuation theorem

Consider a protocol M�t� that changes the mass of the
disk from the value M0=M�t0� to Mf =M�tf�. According to
the general assumption of our derivation, the system is de-
coupled from the bath during the action of the protocol. We
are interested in checking the validity of Eq. �28�. To this end
we need to compute the forward pdf of work, ptf,t0

C,U�W�, the
backward pdf of work pt0,tf

C,Uf�−W�, and the starting average
energy of the backward protocol Uf, given the starting aver-
age energy of the forward protocol U. Solving Eq. �26� with
Eq. �38� �note that Eq. �38� does not depend on the value of
M, hence Tf�U�=T0�U�=U� we arrive at:

�T = W/�1 + C� �42�

hence from Eq. �29� we obtain

Uf = Tf = U + W/�1 + C� . �43�

Using Eq. �40� with Eq. �43� we obtain the normalizations of
the equilibrium pdfs with average energy and external pa-
rameters �U ,M0� and �Uf ,Mf�, respectively,

NC,0�U� = 2�A�1 + C−1�CM0U �44�

NC,f�Uf� = 2�A�1 + C−1�CMf�U +
W

1 + C
� . �45�

Using Eqs. �43�–�45� we find

� Tf

T0
�C−1NC,f�Uf�

NC,0�U�
= �Uf

U
�C Mf

M0
. �46�

From Eq. �21� we have:

ptf,t0
C,U�W� = NC,0

−1 �U�A� dpxdpy�� px
2 + py

2

2Mf
−

px
2 + py

2

2M0
− W�

 1 − � px
2 + py

2

2M0
− U�/�CU��

+

C−1

�47�

where we use the fact that the momentum �px , py� is a con-
stant of motion. By applying the change of variable E= �px

2

+ py
2� / �2M0�, and employing Eq. �44� we obtain

ptf,t0
C,U�W� = U−1�1 + C−1�−C Mf

�M0 − Mf�

 1 − � Mf

M0 − Mf
W − U�/�CU��

+

C−1

. �48�

Similarly one finds the backward pdf of work

pt0,tf

C,Uf�− W� = Uf
−1�1 + C−1�−C M0

�Mf − M0�

 1 − � M0

M0 − Mf
W − Uf�/�CUf��

+

C−1

.

�49�

Taking the ratio of Eq. �48� and Eq. �49� we obtain:

ptf,t0
C,U�W�

pt0,tf

C,Uf�− W�
= �Uf

U
�C Mf

M0
. �50�

By comparison with Eq. �46� we see that the finite bath fluc-
tuation theorem of Eq. �28� is satisfied.

C. Numerical check of the finite bath fluctuation theorem

In order to check numerically the validity of Eq. �50� we
simulated the forward work pdf ptf,t0

C,U�W� for a bath of n=C
2D disks, a given value of U and a protocol that changes the
mass of the disk from M0 to Mf =2M0. The pdf for the nu-
merical work is calculated as follows. We first run a simula-
tion of the motion of the disk with fixed U and M0. We then
construct a histogram that counts the number of occurrences
of energy in the intervals In= �En−�E /2,En+�E /2� for a
certain �E �in our simulations, typically, �E=0.1 kJ /mol,
for a total of about 20 intervals and the histogram counts a
total of about 105 events�. This provides us with the starting
statistics. At this point, we note that, independent of the func-
tional form of M�t�, acting the protocol on a particle with
energy E gives with probability 1 the work W=E�M0
−Mf� /Mf. The reason is that the time dependent system
Hamiltonian �px

2+ py
2� / �2M�t�� generates the following equa-

tion of motion for the momenta: ṗx= ṗy =0. Hence E�tf�
= �px

2+ py
2� / �2M�tf��=E�t0�M0 /Mf regardless of the details of

the protocol. So we immediately obtain a count of work be-
longing to the intervals Jn= �Wn−�W ,Wn+�W�, where Wn
=En�M0−Mf� /Mf and �W=�E�M0−Mf� /Mf. After proper

� � � � � � � � � � � � � � � � � � � � � � � �

�
� � � � � � � � � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
� � � �

� � � � � � � � � � �

�

�
�

�
�
�
�
�
�
� �

� � � � � � � � � � � � �
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FIG. 1. �Color online� Energy pdf for a 2D hard disk of radius
r=1 nm and mass M =2 amu, in a bath composed of 1���, 2���,
3���, 4��� other identical disks. The dots represent histograms of
properly normalized relative frequencies from numerical simula-
tions. All simulations were carried out for the same total energy
Etot=3.3469 kJ /mol, which corresponds to measured average ener-
gies of the disk of interest U1=1.67166 kJ /mol, U2

=1.11644 kJ /mol, U3=0.835784 kJ /mol, U4=0.671521 kJ /mol.
The solid lines represent the pdf predicted by the theory �Eq. �41��
for the measured average energies Ui , i=1. . .4.
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normalization, this yields a histogram, labeled

htf,t0
C,U�n�

that provides a numerical estimate for ptf,t0
C,U�W�. Next, for

each n, we simulate the motion of the disk with fixed param-
eters, Mf =2M0 and Un=U+Wn / �C+1�, and compute n dif-
ferent histograms for the backward probabilities ht0,tf

C,Un�k� in
the same way as the forward histogram was computed. By
selecting the k=n value from each of the backward histo-
grams and collecting them to form the new histogram

ht0,tf

C,Un�n�

we obtain a numerical estimate for pt0,tf

C,Uf�−W�. Finally, we
compute the ratios htf,t0

C,U�n� /ht0,tf

C,Un�n�.
These ratios are depicted in Fig. 2 along with the theoret-

ical values given by Eq. �50�. The figure shows excellent
agreement between analytical theory and numerical experi-
ment. The visible differences are within the statistical errors.
Note that, for the forward protocol, where the mass is in-
creased by a factor 2, the work can only be negative and
vice-versa for the backward protocol. Therefore, the graph
shows only the negative values of nonequilibrium work W.

V. DISCUSSION

A. Physical meaning of �T

The basic quantity that enters the finite bath fluctuation
theorem, and marks a distinction with the canonical fluctua-
tion theorem of Crooks Eq. �35�, is the quantity �T, defined
formally as the solution of Eq. �26�. This quantity enters in
the definition of Uf and Tf. What is the physical meaning of
these quantities? The hard sphere gas example turns useful in
addressing this question. Calculations analogous to those
leading to Eq. �42� show that for a gas of hard spheres with
a total of s degrees of freedom, in contact with a bath with a
specific heat C, it is

�T = W/Ctot �51�

where Ctot is the total specific heat of the system+bath com-
pound system: Ctotªs /2+C. This �T is therefore the incre-
ment of temperature that would result if, after having in-
jected the energy W in the system of interest this is brought
back into contact with the bath and the compound system is
let reach thermal equilibrium. Recall that during the forcing
protocol we assumed that system and bath are decoupled. We
shall refer to this process as to the rethermalization. After
system and bath have rethermalized, the extra energy W,
initially stored in the system, will be shared between system
and bath according to the ratio of the respective specific
heats. In particular the bath gets the energy Q=C�T, which is
indeed the heat that flows from the system to the bath during
rethermalization. Accordingly the system looses this amount
of energy and its change in energy becomes �U=W−Q, in
agreement with the first law of thermodynamics. This means
that Uf represents the average energy of the system after the
rethermalization. To summarize: �a� the system is first in
thermal contact with the bath. Its average energy is Ui and
the temperature is Ti. �b� the system is decoupled from the
bath and the forcing protocol is acted on it. As a result, the
energy W is injected in the system with a certain probability
density ptf,t0

C,U�W�. �c� The system �carrying the extra energy
W�, and bath �still at temperature Ti� are now allowed to
rethermalize. During rethermalization the heat C�T flows in
the bath, the system reaches the average energy Uf, and the
new temperature Tf is reached in the compound system.

Remarkably, the temperature change �T vanishes in the
canonical case: limC→
 �T=0. However it is limC→
 C�T
=W, meaning that the whole extra energy W injected in the
system, flows into the bath during rethermalization. However
this does not affect its temperature �i.e., Ti=Tf�, the specific
heat being infinite in the canonical case. Therefore the term
Tf /T0 does not appear in the canonical fluctuation theorem of
Crooks. In fact the latter gives information about the free-
energy difference of two states with different parameter val-
ues, but same temperature. This is a much more fortunate
situation as compared to the finite bath and microcanonical
fluctuation theorems, in the sense that, in the canonical case,
one should not bother to start the backward process from the
“target” temperature Tf �which depends on W�, but simply
starts it from the same temperature as that of the forward
process.

B. Implications for the second law of thermodynamics

From the canonical fluctuation theorem of Crooks, one
obtains, after proper algebraic manipulations, and integration
over W, the integral form of the fluctuation theorem, namely
the Jarzynski equality �e−�W�=e−��F �3�, which implies the
second law in the form �W���F. A similar integral equation
can be obtained for the finite bath fluctuation theorem too. It
reads

N�Tf
C−1eSf�Uf�� = T0

C−1eS0�U0� �52�

where

���1.41.41.4 ���1.21.21.2 ���1.01.01.0 ���0.80.80.8 ���0.60.60.6 ���0.40.40.4 ���0.20.20.2 0.00.00.0
0.00.00.0

0.50.50.5

1.01.01.0

1.51.51.5

2.02.02.0

WWW ���kJkJkJ���molmolmol���

pppttt fff ,,,ttt000
CCC,,,UUU
������WWW���

pppttt000,,,ttt fff

CCC ,,,UUUfff
������WWW���

FIG. 2. �Color online� Comparison between the numerical val-
ues �dots� and the theoretical expression in Eq. �50� �continuous
line� of ptf,t0

C,U�W� / pt0,tf

C,Uf�−W� for a 2D hard disk of mass M0

=2 amu in a bath composed of three hard disks of the same mass.
The initial energy is U=0.831447 kJ /mol and the protocol doubles
the mass of the disk.
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N ª� pt0,tf

Uf �W�dW �53�

and � · � denotes average over the normalized distribution
qt0,tf

�W�ªpt0,tf

Uf �W� /N. Equation �53� generalizes both the
canonical Jarzynski equality and the microcanonical entropy-
from-work theorem �13,27�. Note that, as for the entropy-
from-work theorem, in general it is N�1 because the energy
Uf in Eq. �53� is a function of W �see Eq. �29��. As pointed
out already in �27�, this prevents obtaining the second law
directly from the integral form of the fluctuation theorem.

Nevertheless the validity of the second law of thermody-
namics for a driving protocol acting on a system that is ini-
tially thermalized with a finite bath, can be proved directly
without invoking the finite bath fluctuation theorem. To this
end it is sufficient to recall the content of two theorems
which have been recently reported in the literature �28–30�.
According to these theorems, the second law of thermody-
namics, in either the minimal work principle form, or the
entropy increase form of Clausius, is obeyed whenever the
initial phase space pdf ��z� is a decreasing function of en-
ergy, namely ��z����z��, for every z , z� such that H�z�
�H�z��. This condition is obeyed by the finite bath statistics,
if the condition C�1 is met �see Eq. �3��. In this regard we
notice that this condition only is violated in the extremal case
when the bath consists of a single degree of freedom �in
which case it is C=1 /2�, or if there is no bath at all �C=0,
microcanonical case�.

The Crooks fluctuation theorem Eq. �35� can be seen as a
statement according to which the probability of doing a cer-
tain negative work −W during the backward protocol is ex-
ponentially suppressed with respect to the probability of do-
ing the positive work W, in the forward protocol. For a cyclic
protocol, this says that it is exponentially more probable to
spend energy, rather harvesting it, in agreement with the
Kelvin postulate �i.e., no energy extraction from a cyclic
process�. A similar situation occurs for the finite bath fluc-
tuation theorem, with the exponential suppression being re-
placed by a power-law suppression. To exemplify this, con-
sider again the gas of N hard spheres in d dimensions.
Imagine the protocol consists of changing the volume of the
box that contains the gas from V0 to Vf. Straightforward
calculations lead the following form of the finite bath fluc-
tuation theorem

ptf,t0
C,U�W�

pt0,tf

C,Uf�− W�
= �Vf

Vi
�N/d�1 +

W

CtotT0
�Ctot−1

�54�

where it is evident that the power-law term �1+W /
�CtotT0��Ctot−1 becomes the exponential term appearing in the
Crooks theorem Eq. �35� for very large C �Ctot=C+dN /2
becomes very large for very large C�.

VI. CONCLUSIONS

We devised a finite bath fluctuation theorem that gives
information about the probability of work on systems that
have been thermalized with a finite heat bath. This corre-
sponds to physical situations which are situated between the

two ideal cases of absent bath �microcanonical ensemble�
and infinite bath �canonical ensemble�. The finite bath fluc-
tuation theorem interpolates between microcanonical and ca-
nonical fluctuation theorems. It thus generalizes these theo-
rems and reveals a common underlying mathematical
structure.

The validity of the finite bath statistics is illustrated by
means of numerical simulations of a 2D gas of hard disks in
a box with perfectly reflecting walls, see Fig. 1, and the
validity of the finite bath fluctuation theorem is confirmed
both analytically and numerically, cf. Fig. 2, for our system.

Similarity and differences between the finite bath fluctua-
tion theorem and the canonical and microcanonical fluctua-
tion theorems have been discussed, as well as its interrelation
with the second law of thermodynamics. In contrast with the
canonical fluctuation theorem, two temperatures, instead of
one, appear in the finite bath fluctuation theorem. The physi-
cal meaning of these two temperatures has been clarified by
considering a rethermalization process.

As shown in Sec. II, the finite bath statistics in Eq. �6� is
a special instance of the general statistical formula according
to which the bath density of states determines the shape of
the system pdf. Based on quasiadiabatic perturbation theory
of chaotic systems, Jarzynski �31� found that a slow particle
coupled to a small bath with fast chaotic degrees of freedom
thermalizes and reaches a stationary pdf whose shape is dic-
tated by the density of states of the bath. Our simulations
provide an example that such behavior of the system pdf
occurs even if there is no time-scale separation between sys-
tem and bath. In any case, thermalization of the subsystem
toward a pdf of the form in Eq. �6� is expected only if the
total system is ergodic.

An important assumption underlying our main finding is
that we used a specific heat that is energy independent:
whether a finite bath fluctuation theorem exists also in the
case of more realistic energy dependent specific heats re-
mains an open challenge.

ACKNOWLEDGMENTS

Financial support by the DFG via the collaborative re-
search center SFB-486, project A10, via the project no. 1517/
26–2, the German Excellence Initiative via the Nanosystems
Initiative Munich �NIM� and the Volkswagen Foundation
�project I/80424� is gratefully acknowledged.

APPENDIX A: SPECIFIC HEAT OF A BATH OF n HARD
SPHERES

Although straightforward, the calculation of the microca-
nonical specific heat of a gas of hard spheres is not discussed
in statistical mechanics textbooks. We present this calcula-
tion below.

The Hamiltonian of a gas of n d-dimensional hard spheres
of radius a reads

HB��pi��,�qi��� = �
i=1

n
pi�

2

2m
+ �

i	j

V��qi� − qj��� , �A1�

where pi� , qi� are the d-dimensional momentum and position
vectors of the ith sphere, and
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V�x� = � 0 x � a

+ 
 x 	 a
� �A2�

is the hard-core interaction potential. The phase space vol-
ume �B with energy below EB becomes

�B�EB� =� �
i=1

n

dqi�� �
i=1

n

dpi�

 ��EB − �
i=1

n
pi�

2

2m
− �

i	j

V��qi� − qj���� , �A3�

where each integral in dqi� is restricted to the region V, of
volume V, of the box. For values of �qi�−qj�� smaller than a,
the integrand vanishes, thus reducing the spatial integration
domain to the region M�Vn where �qi�−qj���a, for each
couple i , j. In this region the interaction term is zero and
one obtains

�B�EB� = V�n� �
i=1

n

dpi���EB − �
i=1

n
pi�

2

2m
� , �A4�

where V�n=�M�i=1
n dqi�, is independent of EB. We shall refer

to V� as to the reduced volume. The integration over the
momenta then yields �32�

�B�EB� = Adn�2m�dn/2V�nEB
dn/2 �A5�

where ANª�N/2 /��N /2+1�. By differentiating �B�EB� with
respect to EB, one finally obtains the density of states of the
gas of hard spheres

�B�EB� = Adn�dn/2��2m�dn/2V�NEB
dn/2−1. �A6�

The only difference with the density of states of an ideal gas
is that the actual volume V is replaced by the reduced volume
V�. The temperature TB�EB�=�B�EB� /�B�EB�, is given by
the same formula as for the ideal gas, i.e., TB�EB�
=2EB / �dn� and so is the specific heat, i.e., C�EB�=dn /2. For
simplicity, in Eq. �A1� we neglected the spheres rotational
degrees of freedom. These however would add to the total
specific heat an energy independent contribution.

APPENDIX B: EXISTENCE AND (NON)UNIQUENESS
OF SOLUTIONS OF Eq. (5)

We prove that, given U and �, it is always possible to find
a T such that Eq. �5� is satisfied. For this purpose we define
the function

I��U,T� ª �
0

CT+U

de���e��e − U��CT − e + U�C−1

�B1�

which is continuous with respect to both U and T. The sym-
bol ���e� denotes the density of states of the Hamiltonian

H�z ,��. Equation �5� can be equivalently expressed as:

I��U,T� = 0. �B2�

For T=0 it is

I��U,0� = �
0

U

de���e��e − U��U − e�C−1 �B3�

Since ���e��0, and e−U�0 in the integration domain, we
have

I��U,0� � 0. �B4�

On the other hand for T�U /C, we find

I��U,T� � �
0

CT

de���e��e − U��CT − e�C−1 �B5�

where we neglected the terms U as compared to CT. By
making the change of variable x=CT−e, and neglecting
again the term U as compared to CT, we obtain:

I��U,T� � �
0

CT

dx���CT − x��CT − x�xC−1. �B6�

All three terms forming the integrand are non-negative,
hence

I��U,T � U/C� � 0. �B7�

Thus I��U ,T� is nonpositive for T=0 and non-negative for
very large T. This implies, that there must be at least one
non-negative value of T, for which I��U ,T�=0. Uniqueness,
however is not guaranteed.

In a similar way it is also possible to prove that

I��0,T� � 0, I��U � CT,T� � 0 �B8�

showing that one can also fix T and find a U such that
I��U ,T�=0. Also in this case only existence is guaranteed
but not uniqueness.

Examples for which two or more different energies corre-
spond to the same temperature were reported in �33,34� for
microcanonical �C=0� gases with interparticle interaction of
the Lennard-Jones type. These systems undergo a microca-
nonical phase transition whose signature is the appearance of
oscillations in the function T�U�, which, therefore, is not
invertible �i.e, U�T� is multivalued�. These oscillations are
expected to appear also if these Lennard-Jones type systems
are thermalized by means of a finite bath with specific heat
C�0. Based on the observation that no oscillation appear in
the canonical treatment �34�, one expects that the amplitude
of these oscillations decreases with increasing C.
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